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Abstract—Vector Autoregression Models are multi-equation
models that linearly describe the simultaneous interactions and
behavior among a group of variables, using only their own past.
They have been traditionally used in finance and econometrics,
but, with the arrival of Big Data, huge amounts of data are
being collected in numerous fields and their use for other fields
is being considered. Tools are available for these models, but
the huge amount of data makes it necessary to exploit High-
Performance Computing for the acceleration of methods to
obtain the models. This paper considers a matrix formulation to
represent time dependencies, and the solution of the optimization
problem generated is approached through hybrid metaheuristics.
The parameterized, parallel implementation of the metaheuristics
and the matrix formulation ease the exploitation of multilevel
shared-memory parallelism.

Index Terms—vector autoregression models, time series, meta-
heuristics, shared-memory, GPU

I. INTRODUCTION

Vector Autoregression (VAR) models [1] are multi-equation

models that linearly describe the simultaneous interactions and

behavior of a group of variables, using only their own past.

More specifically, a VAR is a model of simultaneous equations

formed by a system of equations in which the contemporary

values of model variables do not appear in any explanatory

variable in the equations. The set of explanatory variables in

each equation is a block consisting of lags of each of the model

variables, and the block is the same for all the equations.

VAR models have traditionally been used in finance and

econometrics [2], [3]. With the arrival of Big Data, huge

amounts of data are being collected in numerous fields. We are

studying the application of statistical models in health prob-

lems which, conventionally, have been applied in econometrics

[4]. We use Vector Autoregression Models (VAR) to model

time series. Tools exist to tackle this problem [5], but the large

This work was supported by the Spanish MINECO, as well as European
Commission FEDER funds, under grants TIN2016-80565 and TIN2015-
66972-C5-3-R.

amount of data, along with the availability of computational

techniques and high performance systems, advise an in-depth

analysis of the computational aspects of VAR, so large models

can be solved efficiently with today’s computational systems.

A matrix formulation of the time series of VAR is presented.

The problem of finding the optimum VAR model for a given

series is an optimization problem whose solution can be

approached through metaheuristics. The application of param-

eterized metaheuristic schemes have proved to be a practical

approach for the determination of satisfactory metaheuristics

for several problems [6], [7]. Additionally, the parameter-

ized scheme facilitates the development and optimization of

parallel implementations [8], [9]. This paper analyzes the

application of shared-memory parallelism to determine VAR

models through hybrid metaheuristics developed on top of a

parameterized metaheuristic scheme.

There are different strategies to solve this problem [10].

Ordinary Least Squares (OLS) is used for the fitness of the

metaheuristics. Other information criteria could be used, of

which the most well-known and used (but not the only ones)

are Akaike (AIC) [11], Schwarz (BIC) [12] and Hannan-Quinn

(HQC) [13]. All these criteria have similar computational

costs, and the study of the goodness of the metaheuristics and

their parallelization is not affected by the criterion.

The rest of the paper is organized as follows. Section II

describes the matrix formulation of the time series used in this

paper. The hybrid metaheuristics considered for approaching

the time series model are analyzed in Section III, while their

parallelization for shared-memory is studied in Section IV.

The results of some experiments are shown in Section V,

which provides experimental evidence of the advantages of

the parameterized scheme and the matrix formulation for

obtaining parallel and efficient versions of the metaheuristics.

Some ongoing research lines are outlined in Section VI, and

Section VII concludes the paper.
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II. MATRIX FORMULATION FOR VECTOR

AUTOREGRESSION MODELS

There is ample literature on time series [14], most of it

devoted to econometrics and finance [2], [3], and there are

many types of time series. VAR are based on the idea that

the value of a variable at a time point depends linearly on the

value of one or more variables at previous instants of time.

Since, most of the time, not all the variables will follow this

pattern, there will be dependent (endogenous) and independent

(exogenous) variables. The latter will not be analyzed by the

model, but will be used to model dependent variables. A

matrix formulation is used to facilitate application of High-

Performance techniques to the problem.

We consider d dependent parameters at t time instants.

The vector of parameters at an instant i is represented by

y(i). So, the time series Y is a matrix of dimension t × d.

Similarly, vectors z(i), 1 ≤ i ≤ t, represent the values of

independent variables; each vector z(i) is of size e and the

series of independent variables is a matrix Z of dimension

t× e. So, the matrices which determine the time series are

⎛
⎜⎜⎝

y
(1)
1 . . . y

(1)
d

...
. . .

...

y
(t)
1 . . . y

(t)
d

⎞
⎟⎟⎠

⎛
⎜⎜⎝

z
(1)
1 . . . z

(1)
e

...
. . .

...

z
(t)
1 . . . z

(t)
e

⎞
⎟⎟⎠ (1)

The values of the endogenous variables at instant i depend

on those of ty and tz previous instants for the endogenous

and exogenous variables. The dependencies on the endogenous

variables are represented by matrices Ai ∈ Rd×d, 1 ≤ i ≤ ty ,

and those on the exogenous ones by matrices Bi ∈ Re×d,

1 ≤ i ≤ tz . The dependencies can be represented as

y(j) ≈ y(j−1)A1 + y(j−2)A2 + . . .+ y(j−ty)Aty+

z(j−1)B1 + z(j−2)B2 + . . .+ z(j−te)Bte + C (2)

where C is a vector 1× d of constant values.

The dependencies can be represented in matrix form, with

the values of the series at instants ty + 1 to t depending on

the previous ones:

Y (ty + 1 : t, :) ≈
Y (ty : t− 1, :)A1 + Y (ty − 1 : t− 2, :)A2

+ . . .+ Y (1 : t− ty, :)Aty+

Z(ty : t− 1, :)B1 + Z(ty − 1 : t− 2, :)B2

+ . . .+ Z(ty − tz + 1 : t− tz, :)Btz + C (3)

Alternatively, if the vectors at previous instants are represented

in a matrix X of dimension (t− ty)× (d · ty + e · tz + 1)

⎛
⎜⎝

y(ty) . . . y(1) z(ty) . . . z(ty−tz+1) 1
...

...
...

y(t−1) . . . y(t−ty) z(t−1) . . . z(t−tz) 1

⎞
⎟⎠

(4)

Equation (3) can be represented as

⎛
⎜⎝

y(ty+1)

...

y(t)

⎞
⎟⎠ ≈ X ∗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1

...

Aty

B1

...

Btz

C

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

where the matrix on the right (built from matrices Ai, Bi and

C) represents the model of the time series. We call this matrix

A, of dimension (d · ty + e · tz + 1)× d.

With this formulation, the optimization problem to be solved

consists of the determination of the model (matrix A) which

best represents the dependencies on the time series:

min
A
‖Y (ty + 1 : t, :)−X ∗A‖ (6)

The problem can be approached by Ordinary Least Squares

(OLS). Here, local search and distributed metaheuristic algo-

rithms and hybridations are considered. The basic distributed

metaheuristics considered are Genetic Algorithms [15] and

Scatter Search [16], in combination with Local Search [17]

and Tabu Search [18].

For each possible model (matrix A, an element of the meta-

heuristic) the norm in (6) represents the fitness, whose compu-

tation has a cost of order O ((t− ty) · (d · ty + e · tz + 1) · d),
which means a high computational cost in the application of

metaheuristics for large time series with large dependencies.

So, matrix computation techniques should be used to reduce

the execution time [19]. These techniques are not considered in

this paper, which is devoted to the analysis of the application

of hybrid metaheuristics and their parallelization. If optimized

matrix operations were used, the execution time would be re-

duced, with no modifications to the metaheuristic and parallel

scheme.

III. BASIC AND HYBRID METAHEURISTICS

The representation of the candidate elements and their

fitness are common to all the metaheuristics considered:

• A candidate solution is a matrix A (Ai, Bi and C in

(5)) of size (d · ty + e · tz + 1) × d. Different types of

problems can be stated by imposing restrictions on the

values in A. For example, the values can be in an interval

or a set of integers or real numbers. LAPACK [20] can be

used for the solution of (6) for the real, continuous prob-

lem. The metaheuristic approach, generally with a larger

execution time, can be used for the different versions

of the problem. The results in the experimental section

were obtained for solutions in an interval of real numbers,

but this work focuses on the exploitation of parallelism,

and the conclusions do not change significantly for the

different versions.

• The fitness for a candidate solution A is a measure of

how the time series Y is approached with the model A.
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The norm ‖Y −X ∗A‖ is used in the experiments. Other

statistical criteria (AIC, BIC, HQC, etc.) can be used,

with different costs for the computation of the fitness. The

differences in the solutions with the different criteria are

residual, and now again the parallelism is not influenced

by the fitness function.

The main characteristics of the basic metaheuristics con-

sidered are commented on. Local search and distributed

(population-based) metaheuristics are combined in a hybrid

approach.

A. Local Search

Local Search methods work by analyzing the neighbor-

hood of the candidate elements. The neighborhood considered

for a vector with (d · ty + e · tz + 1) · d entries consists of

2 · (d · ty + e · tz + 1) · d elements, which are obtained by

adding and subtracting a certain value to each position of

the vector. In the continuous version of the problem, any

quantity could be selected to be added or subtracted. Each

time an entry with value v is modified, the value to modify

it is randomly selected in the interval [0.001, v/10], which

means the minimum modification is 0.001, and the entry is not

modified by more than a 10% of its value. Other intervals were

considered, but this interval gave satisfactory experimental

results.

The fitness is calculated for all the elements

generated in the neighborhood of an element. The

cost of the computation of the fitnesses is of order

O
(
(t− ty) · (d · ty + e · tz + 1)

2 · d2
)

. So, the computation

for the best neighbor can be very costly for large

neighborhoods and time series, and if needed the number of

elements in the neighborhoods could be established at a fixed

value, with random selection of the entries to be modified.

If the best element in the neighborhood is better than the

active element, it becomes the new active element. If not,

the search continues with the same element, and the new

neighborhood to be explored changes due to the random

generation of the neighbors. A maximum number of iterations

from an initial value can be established, and after this number

a new active element can be generated for a new search, so

giving a GRASP method [21].

B. Tabu Search

Tabu Search [18] is used to direct the search. A list of

tabu decisions is established, and the same decision can not

be taken while it is in the tabu list. The idea is to diversify

the search in different directions to avoid local optima. In our

implementation, the last positions modified in the vector v are

maintained in the list. Short lists gave satisfactory experimental

results, maybe due to the random selection of the amplitude

of the modification of the entries in the active candidate.

A long-term tabu strategy is used with a tabu element which

is the mean of the best elements in a number of the last

iterations. It is used in the selection of elements to be explored.

Elements close to this tabu element are discarded. The idea

is to avoid concentrating the search in the same area of the

solution space.

C. Genetic Algorithms

The previous methods are local search metaheuristics, which

can be hybridized with distributed metaheuristics. The most

popular distributed (or population based) metaheuristic is

Genetic Algorithm [15]. The way in which the basic functions

of the GA have been implemented is briefly explained:

• A population is initially generated, with the values of each

entry of each individual of the population randomly gen-

erated in a given interval. The population generated can

be improved with a Local or Tabu Search, so obtaining

a hybrid metaheuristic.

• A number of iterations are performed on the popula-

tion, with the combination of some elements to gener-

ate descending elements which substitute the ascending

elements if their fitness is better. GA select elements to

be combined with more probability for the best elements

(roulette selection). In out implementation, the best ele-

ments are always selected, and some elements from the

worst ones are randomly selected. Combinations of best

elements, of best and worst and of worst elements are

generated. When the number of combinations of best

elements is large, the method is closer to a pure GA.

• The combination on a GA can also be carried out in

different ways. A typical approach is to combine two

ascendants by selecting a middle point at which they

are crossed: two descendants are generated, each with

the initial half of one ascendant and the final half of the

other. This typical combination does not make sense for

our problem, because it can generate combinations of ele-

ments in which the whole part of the vector corresponding

to the endogenous or exogenous elements is unchanged.

So, a simplified Path Relinking [22] approach is used:

given two ascendants v1 and v2, the two descendants are

in the path connecting them, 1
3v1 +

2
3v2 and 2

3v1 +
1
3v2.

• The mutation contributes to the diversification of the

search. A low percentage of individuals are selected

to be mutated. An entry v of the individual is ran-

domly selected, and it is updated by randomly adding

or subtracting a random value in the interval [0, v]. The

modification is in general larger than when analyzing the

neighborhood, and so mutation can contribute to avoid

local optima. The elements obtained by mutation are

likely to die, and to prevent their early death, they can

be improved with a few iterations of Local Search.

• The best elements from those in the original population

and those generated with combination and mutation are

included in the population for the next iteration. The

inclusion of a few of the nonbest elements can contribute

to diversify the search, as could the use of the long-term

tabu strategy, which can be hybridized with GA.
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D. Scatter Search

Scatter Search (SS) is another popular distributed meta-

heuristic [22]. It differs from GA in the systematic application

of intensification and in the way in which diversification is

achieved. The main differences are:

• An initial set of elements is randomly generated as in GA,

but it is normally smaller than for GA. The elements are

improved before starting the iterations.

• Typically, all the elements are combined, in pairs or

bigger groups. In our implementation, the combination

is like that for GA, but the percentages of best and worst

elements selected for combination are similar, and a large

number of combinations is carried out, and the elements

so obtained are improved.

• The diversification is carried out through the selection and

combination of nonpromising elements, and so mutation

is not applied.

• The percentage of nonpromising elements to be included

in the reference set is now higher, again to help diversi-

fication.

E. Hybrid metaheuristics

Metaheuristics can be hybridized in many ways [23], and

hybridation with exact methods is also possible [24]. Some

hybridation possibilities have been mentioned for the basic

methods in the previous subsections. Metaheuristics can be

developed with a unified scheme [25], which can in turn be

parameterized [6]. The parameterized scheme used here for

hybrid metaheuristics is shown in Algorithm 1. Each basic

function includes some parameters whose value is selected to

obtain basic metaheuristics or hybridations. The hybridation

of local search and distributed methods is achieved with the

inclusion of improvements at two parts of the scheme.

Algorithm 1 Parameterized scheme for hybrid metaheuristics

Initialize(Sini,ParamIni)
Improve(Sini,Sref,ParamImpIni)
while not EndCondition(Sref,ParamEndCon) do

Select(Sref,Ssel,ParamSel)
Combine(Ssel,Scom,ParamCom)
Diversify(Sref,Scom,Sdiv,ParamDiv)
Improve(Scom,Sdiv,ParamImp)
Include(Scom,Sdiv,Sref,ParamInc)

end while

The general ideas for each function and the meaning of

their sets and parameters are commented on. The parameters

are summarized in Table I.

• The only parameter for the initialization is the number

of elements which are randomly generated for the set

Sini (ParamIni={INEIni}). When only one value is

generated we obtain a local search method, and the value

is normally smaller for SS than for GA.

• A percentage PEIIni of the elements of Sini are

improved, with an intensification of the improvement

(IIEIni), and the best FNEIni elements are selected

for the reference set (Sref) to work with in the succes-

sive iterations. For Tabu Search, LTLIni is the length

of the tabu list.

• The iterations finish after MNIEnd steps or after

MIREnd steps without improving the best solution. A

time limit can also be established.

• Some elements of the reference set are selected (set

Ssel). A large number of best elements (NBESel)
would give a method close to a GA, while a large number

of elements from the worst ones (NWESel) contributes

to diversification.

• A number of combinations between best elements,

best-worst elements and worst elements are made

(NBBCom, NBWCom and NWWCom), with more

combinations between best elements for more intensifi-

cation of the search and more combinations with worst

elements for diversification.

• A percentage of elements (PEDDiv) from the reference

set and the elements obtained by combination are diver-

sified.

• The same improvement routine used after initialization

is called again, now to improve some of the elements

obtained by combination (a percentage PEIImp of

elements to be improved, with intensity IIEImp) and the

elements obtained by diversification, which are improved

with intensity IIDImp. LTLImp and LTDImp are the

lengths of the corresponding tabu lists.

• The best NBEInc elements (from the three sets Sref,

Scom, Sdiv) are included in the reference set for

the next iteration, and the other FNEIni-NBEInc
elements are selected from the remaining ones. The

parameter LTMInc indicates the number of previous

iterations for the computation of the mean solution of

the long-term tabu memory.

IV. SHARED-MEMORY HYBRID METAHEURISTICS

Metaheuristics can be parallelized in a number of ways

[26], [27], and there are works on parallelization of each of

the basic metaheuristics considered (Local Search [28], Tabu

Search [29], GA [30]) and for different types of computa-

tional systems (GPU [31]). The unified, parameterized scheme

enables the simultaneous implementation of parallel versions

of different basic metaheuristics and their hybridations for

different types of computational systems (e.g., shared-memory

[8] and heterogeneous clusters [9]).

Here, we discuss and analyze the possibilities of exploitation

of shared-memory parallelism in nodes with multicore CPUs.

The parallelism is implemented with independent paralleliza-

tion of each basic routine in Algorithm 1. The parallelization

in the routines Initialize, Combine, Diversify and

Include consists of just parallelization of a loop, with

dynamic assignation of the steps of the loop to a pool of

threads. The improvement function has higher computational

cost, and two levels of parallelism are used, the first to

distribute the set of elements to be improved, and the second to

assign different areas of the neighborhood to different threads.
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TABLE I
METAHEURISTIC PARAMETERS IN THE PARAMETERIZED METAHEURISTIC SCHEME

INEIni Initial Number of Elements

PEIIni Percentage of Elements to be Improved in the initialization
IIEIni Intensification in the Improvement of Elements
LTLIni Length of the Tabu List for local search
FNEIni Final Number of Elements for successive iterations

MNIEnd Maximum Number of Iterations
MIREnd Maximum number of Iterations with Repetition

NBESel Number of Best Elements selected for combination
NWESel Number of Worst Elements selected for combination

NBBCom Number of Best-Best elements combinations
NBWCom Number of Best-Worst elements combinations
NWWCom Number of Worst-Worst elements combinations

PEDDiv Percentage of Elements to be Diversified

PEIImp Percentage of Elements obtained by combination to be Improved
IIEImp Intensification of the Improvement of Elements obtained by combination
IIDImp Intensification of the Improvement of elements obtained by Diversification
LTLImp Length of the Tabu List for local search on elements obtained by combination
LTDImp Length of the Tabu list for local search on elements obtained by Diversification

NBEInc Number of Best Elements included in the reference set for the next iteration
LTMInc Long-Term Memory size for the selection of elements to be included in the reference set

Additionally, for our approximation to the time series problem,

the matrix operations (matrix multiplication and computation

of the norm) can be done in parallel, and there are three

parallelism levels in total.

The three levels are exploited in shared-memory with mul-

tilevel parallelism in OpenMP [32], with a different number

of threads at each level depending on the amount of work at

each level and the characteristics of the computational system

(number of cores and computational capacity).

V. EXPERIMENTAL RESULTS

Experiments were carried out in nodes of a cluster with five

nodes of four types:

• marte (and its twin node mercurio): hexa-core CPU

AMD Phenom II X6 1075T at 3.00 GHz, with architec-

ture x86-64, 16 GB of RAM, private L1 and L2 caches

of 64 KB and 512 KB, and a L3 cache of 6 MB, shared

by all the cores.

• saturno: 4 CPU Intel Xeon E7530 (hexa-core) at 1.87

GHz, with architecture x86-64, 32 GB of RAM, private

L1 and L2 caches of 32 KB and 256 KB per core, and

a L3 cache of 12 MB shared by all the cores in each

socket.

• jupiter: 2 CPU Intel Xeon E5-2620 (hexa-core) at 2.00

GHz, with architecture x86-64, 32 GB of RAM memory,

private L1 and L2 caches of 32 KB and 256 KB per node,

and a L3 cache of 15 MB shared by all the cores of a

socket.

• venus: 2 CPU Intel Xeon E5-2620 (hexa-core) at 2.40

GHz, architecture x86-64, 64 GB of RAM memory,

private L1 and L2 caches of 32 KB and 256 KB per

node, and L3 cache of 15 MB shared by all the cores in

a socket.

Parallelism can be exploited at three levels:

• The highest level corresponds to the parallelization of the

loops for treating the elements in each basic function of

Algorithm 1. The parallelization at this level is preferable

when the number of elements of the sets is large enough;

but there are few possibilities of parallelism for local

search methods or for medium size sets in computational

systems with many cores.

• Medium level parallelism can be exploited in the anal-

ysis of the neighborhood in the improvement func-

tions. In our implementation the neighborhood has 2 ·
(d · ty + e · tz + 1) · d elements, so there are enough

elements for the exploitation of parallelism when the

number of data and time dependencies are not too small.

• At the lowest level is the computation of the fitness func-

tion, (6). To take advantage of shared-memory parallelism

at this level the size of the problem should be large to

compensate the cost of thread management.

The exploitation of parallelism at the three levels is

initially analyzed in the four nodes where experiments

were carried out. The vector of metaheuristic parameters is

(80, 20, 50, 10, 1, 10, 5, 10, 10, 5, 50, 10, 1, 10, 20, 1, 15, 3): 80

elements are randomly generated, 50% of them are improved,

with 10 steps of exploration of the neighborhood and a tabu

list of only one element; the reference set for the successive

iterations comprises 20 elements; the best 10 elements and 5

elements from the remaining ones are selected for combina-

tions, with 10, 10 and 5 combinations between best, best-worst

and worst elements; 50% of the elements in the reference

set and those obtained by combination are improved, with

intensity 10 and tabu list with 1 element; 20% of the elements

are mutated, and the elements generated are improved with 20

steps of improvement and tabu list with 1 element; the 15 best

elements and five elements from the remaining ones form the

reference set for the next iteration; and information of the last

3 iterations is used to diversify the nonbest elements selected.

Experiments are conducted for two problems: a small problem

(SP) with t = 200, d = 4, e = 2, ty = 3 and tz = 2; and

a large problem (LP) with t = 600, d = 8, e = 6, ty = 7
and tz = 6. Fig. 1 shows the speed-up for SP (left) and LP

(right), for the four computational nodes considered. A similar

behavior is observed in the four nodes, and its use allows us

to draw system-independent conclusions:
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Fig. 1. Speed-up in four computational nodes with parallelism at three levels,
varying the number of threads, for small (left) and large (right) problems.

• The exploitation of parallelism at the highest level is the

preferred option for SP.

• The performance with medium level parallelism de-

creases for SP when the number of threads increases.

• For LP the speed-up with medium and large parallelism

is similar, with medium-level parallelism being slightly

better.

• The exploitation of low level parallelism is far worse than

with the other types of parallelism. Only for LP and a

small number of threads is the speed-up larger than one.

The preferred number of threads at each of the three

levels can be different depending on the values of the

metaheuristic parameters. So, a different number of threads

can be fixed for each level in each of the basic functions

in Algorithm 1. Fig. 2 analyses three-level parallelism; it

shows the speed-up with different combinations of threads

at each level, with a total of six and twelve threads, and

for two metaheuristics working with small sets (the small

metaheuristic (SM) corresponds to the vector of metaheuristic

parameters (10, 5, 50, 5, 1, 2, 1, 2, 1, 0, 50, 5, 1, 10, 5, 1, 3, 1),
and the large metaheuristic (LM) to

(20, 10, 50, 5, 1, 4, 2, 4, 2, 0, 50, 5, 1, 10, 5, 1, 6, 1)). The

size of the time series are those of LP. Comparing the

speed-up with the different combinations the conclusions are:

• Working with small sets (SM) propitiates the use of par-

allelism at a low level. For six threads, the combination

1× 6× 1 (parallelism with 6 threads in the middle level)

gives the highest speed-up, with a mean of 5.11, while

for the combination 2×3×1 the mean is 4.62. For twelve

threads the preferred combination changes, with a mean

speed-up of 5.58 for 1× 6× 1 and of 5.85 for 1× 3× 4.

In one case (saturno with 12 threads for SM) the best

combination is 1× 6× 2.

• The speed-up with 12 threads is far from the optimum,

which is due to the size of the sets with which the meta-

heuristics work, which means the amount of computation

is not enough to fully exploit the computational capacity

of the computational systems.

• For LM, six threads give better performance than twelve,

which may be due to a larger amount of memory being

accessed by more threads.

VI. ONGOING WORK

Nowadays computational nodes comprise multicore CPUs

plus one or more GPUs, so we are working in the exploitation

of the heterogeneous CPU+GPU parallelism. GPUs paral-

lelism can be exploited at different levels. In any case, the

data of the problem (matrices Y and X and the dimensions)

are transfered from CPU to the GPUs before starting the

computation, so the transferences during the computation

correspond to elements of the sets and their fitness.

• The highest level corresponds to an island scheme, with

the reference set divided in subsets which are each

assigned to a different GPU. If only one GPU is available,

all the computation should be carried out in that GPU.

• The highest level of the shared-memory version corre-

sponds to the parallelization of the loops for the treatment

of elements. The steps of a loop are assigned to different

threads, with one thread per GPU, and each thread calls

its GPU to work with the corresponding element, which

is transfered from CPU to GPU for the computation, and

the required results (the elements generated together with

the fitness) are transfered back from GPU to CPU. In

this way the GPU computes the fitness of the element or

explores its neighborhood in the improvement function.

• GPUs can work at the second level of the shared-memory

version: the analysis of the neighborhood of each element

would be done in parallel, with each GPU working in one

area of the neighborhood, obtaining the best neighbor in

its area, which is transfered together with its fitness back

to the CPU, which computes the best neighbor before the

next step of the improvement of the active element.
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Fig. 2. Speed-up in four computational nodes with exploitation of three-level parallelism and different combinations of threads at each level.

• The parallelization at the lowest level would delegate the

computation of the fitness to GPU.

The first version (island model) does not seem to be the best

option for the exploitation of GPUs, whose parallelism model

is SIMD, and the lowest level version needs large matrices

for GPU parallelism to compensate the cost of CPU-GPU

transferences. So, the best option seems a combination of the

two middle-level versions, maybe with GPUs at the first or

second level of the shared-memory version depending on the

basic routine and the number of elements to be treated at

each level. The points at which the GPUs work are shown in

Algorithm 2. The routines are labeled CPU or GPU depending

on where they are applied. CPU routines work with OpenMP

parallelism. The GPUs work in the computation of the fitness

after initialization, combination and diversification, and in the

improvement of elements, where the parallelism at two levels

might be explored.

The inclusion of GPU parallelism in the different levels

Algorithm 2 CPU-GPU work partition in the parameterized

scheme of metaheuristics
InitializeCPU(Sini,ParamIni)
ComputefitnessGPU(Sini,ParamIni)
ImproveGPU(Sini,Sref,ParamImpIni) //two possible levels
while not EndConditionCPU(Sref,ParamEndCon) do

SelectCPU(Sref,Ssel,ParamSel)
CombineCPU(Ssel,Scom,ParamCom)
ComputefitnessGPU(Scom,ParamCom)
DiversifyCPU(Sref,Scom,Sdiv,ParamDiv)
ComputefitnessGPU(Sdiv,ParamDiv)
ImproveGPU(Scom,Sdiv,ParamImp) //two levels
IncludeCPU(Scom,Sdiv,Sref,ParamInc)

end while

is being analyzed. Preliminary results show that the use of

GPU can be advantageous for large matrices. For example, in

jupiter, with siz GPUs, when the computation of the fitness

is delegated to one GPU (lowest level parallelism), with the

metaheuristic parameters of the experiments in Fig. 1 and with
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the sizes of SP (t = 200, d = 4, e = 2, ty = 3 and tz = 2),

the speed-up of GPU parallelism in relation to that of CPU is

0.83 (CPU is faster than GPU), but the speed-up increases for

larger problems: for d = 5, e = 3, ty = 3 and tz = 2 it is 0.92,

and for d = 5, e = 3, ty = 4 and tz = 2 it is 1.25. Higher

speed-up is achieved with six GPUs than with just one only

for very large problems, so the GPU implementation needs

further optimizations.

VII. CONCLUSIONS AND FUTURE WORK

A matrix formulation for Vector Autoregression Models

has been stated together with basic and hybrid metaheuristics

for the determination of satisfactory models. The three-level

parallelism obtained with parallelism in the metaheuristic

scheme and in the matrix operations allows us to experiment

with different combinations so that the best configuration can

be obtained depending on the problem size, the values of the

metaheuristic parameters (the metaheuristic being applied) and

the computational system.

The experiments show some drawbacks in the implementa-

tion, and we are working to improve them:

• Matrix computation techniques are being analyzed to

improve the application of linear algebra routines [19].

QR or LQ decompositions can be applied to simplify

the model. The Toeplitz-type structure in (5) advises the

adaptation of algorithms for structured matrices.

• The reduction in the speed-up with twelve threads may

be due to the memory access pattern. Affinity should

be considered and message-passing parallelism with an

island scheme is being implemented.

• The inclusion of GPU parallelism at the three levels is

being implemented.

The determination of the combination of threads at the three

levels of parallelism which gives the best performance is a

hard problem. So, a systematic approach to obtain satisfactory

combinations is needed. We are working on the adaptation to

this three-level scheme of auto-tuning techniques used for a

two-level scheme [9].

Our work centers on the parallelization of the parameter-

ized schema. We have not yet compared this approach with

available software, like STATA [5] and MATLAB [33]. The

comparison should be made in terms of goodness of the

solution and execution time.

A simulator is being developed [34]. At present it is in a

preliminary version which does not include the metaheuristic

approach here presented. When the tool is mature enough it

will be made freely available.

REFERENCES

[1] C.A. Sims. Macroeconomics and reality. Econometrica, 48(1):1–48,
1980.

[2] J.H. Cochrane. Time series for macroeconomics and finance. Graduate
School of Business, University of Chicago, 2005.

[3] R. S. Tsay. Analysys of financial time series. John Wiley & Sons, second
edition, 2005.
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message-passing metaheuristic scheme on a heterogeneous cluster. Soft
Comput., 21(19):5557–5572, 2017.

[10] H. Lütkepohl. Econometric analysis with vector autoregressive models.
Handbook of Computational Econometrics, pages 281–319, 2009.

[11] H. Akaike. Information theory and an extension of the maximum
likelihood principle. In Proc. 2nd Int. Symp. on Information Theory,
pages 267–281, 1973.

[12] G. Schwarz. Estimating the dimension of a model. Ann. Statist, 6:461–
464, 1978.

[13] E.J. Hannan and B.G. Quinn. The determination of the order of
an autoregression. Journal of the Royal Statistical Society: Series B
(Methodological), 41:190–195, 1979.

[14] H. Lütkepohl. New introduction to multiple time series analysis.
Springer Science & Business Media, 2005.

[15] J.H. Holland. Genetic algorithms and the optimal allocation of trials.
SIAM J. Comput., 2(2):88–105, 1973.

[16] F. Glover and G.A. Kochenberger. Handbook of metaheuristics. Kluwer
Academic, 2003.

[17] M.G.C. Resende and C.C. Ribeiro. Greedy randomized adpative search
procedures. Kluwer Academic, 2003.

[18] F. Glover and M. Laguna. Tabu search. Kluwer Academic, 1997.
[19] G. Golub and C.F. Van Loan. Matrix computations. The John Hopkins

University Press, fourth edition, 2013.
[20] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J.J. Dongarra, J. Du

Croz, A. Grenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and
D. Sorensen. LAPACK User’s Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 1995.

[21] M. Resende. Greedy randomized adaptative search procedures
(GRASP). Technical Report TR 98.41.1, AT&T Labs-Research, 2000.

[22] F. Glover. A template for scatter search and path relinking. In Artificial
Evolution, Third European Conference, AE’97, Nı̂mes, France, 22-24
October 1997, Selected Papers, pages 1–51, 1997.

[23] C. Blum, J. Puchinger, G.R. Raidl, and A. Roli. Hybrid metaheuristics in
combinatorial optimization: A survey. Appl. Soft Comput., 11(6):4135–
4151, 2011.

[24] L. Jourdan, M. Basseur, and E.-G. Talbi. Hybridizing exact methods and
metaheuristics: A taxonomy. European Journal of Operational Research,
199(3):620–629, 2009.

[25] G.R. Raidl. A unified view on hybrid metaheuristics. In Hybrid
Metaheuristics, Third International Workshop, LNCS, volume 4030,
pages 1–12, October 2006.

[26] E. Alba. Parallel metaheuristics: a new class of algorithms. Wiley-
Interscience, New York, 2005.

[27] P. Borovska. Efficiency of parallel metaheuristics for solving combina-
torial problems. In CompSysTech, page 15, 2007.

[28] A. Kumar and A. Nareyek. Scalable local search on multicore com-
puters. In Proceedings of the Eighth Metaheuristics International
Conference, pages 146.1–146.10, 2009.

[29] T.G. Crainic, M. Gendreau, and J.Y. Potvin. Parallel tabu search. Parallel
Metaheuristics, E. Alba (ed.), 2005.

[30] G. Luque and E. Alba. Parallel genetic algorithms. Parallel Metaheuris-
tics, E. Alba (ed.), 2005.

[31] E.-G. Talbi and G. Hasle. Metaheuristics on GPUs. J. Parallel Distrib.
Comput., 73(1):1–3, 2013.

[32] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, and J. Mc-
Donald. Parallel Programming in OpenMP. Morgan Kauffman, 2001.

[33] MathWorks, VAR. https://www.mathworks.com/help/econ/
vector-autoregression-models.html.

[34] https://github.com/fylux/tsf_var.

835


